Quadratic forms on completely symmetric spaces
نویسندگان
چکیده
منابع مشابه
Dirichlet forms on symmetric spaces
© Annales de l’institut Fourier, 1973, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/), implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichie...
متن کاملSpecialization of Quadratic and Symmetric Bilinear Forms
• Chapters III and IV are in preparation. Preface A Mathematician Said Who Can Quote Me a Theorem that's True? For the ones that I Know Are Simply not So, When the Characteristic is Two! This pretty limerick first came to my ears in May 1998 during a talk by T.Y. Lam on field invariants from the theory of quadratic forms. 1 It is – poetic exaggeration allowed – a suitable motto for this monogra...
متن کاملApplications of quadratic D-forms to generalized quadratic forms
In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.
متن کاملAssociation Schemes of Quadratic Forms and Symmetric Bilinear Forms
Let Xn and Yn be the sets of quadratic forms and symmetric bilinear forms on an n-dimensional vector space V over Fq , respectively. The orbits of GLn(Fq ) on Xn × Xn define an association scheme Qua(n, q). The orbits of GLn(Fq ) on Yn × Yn also define an association scheme Sym(n, q). Our main results are: Qua(n, q) and Sym(n, q) are formally dual. When q is odd, Qua(n, q) and Sym(n, q) are iso...
متن کاملDecomposable quadratic forms in Banach spaces
A continuous quadratic form on a real Banach space X is called decomposable if it is the difference of two nonnegative (i.e., positively semidefinite) continuous quadratic forms. We prove that if X belongs to a certain class of superreflexive Banach spaces, including all Lp(μ) spaces with 2 ≤ p < ∞, then each continuous quadratic form on X is decomposable. On the other hand, on each infinite-di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1980
ISSN: 0024-3795
DOI: 10.1016/0024-3795(80)90242-6